|
@@ -625,5 +625,504 @@ namespace OTSModelSharp.ServiceCenter
|
|
|
return points;
|
|
|
}
|
|
|
|
|
|
+ #region 合并天宇颗粒融合新增函数
|
|
|
+ public Mat CombinImageX(Mat[] list_mats, int OverlapParam, int type)
|
|
|
+ {
|
|
|
+ List<Mat> matStitch = new List<Mat>();//拼接
|
|
|
+ List<Mat> matCombin = new List<Mat>();//合并
|
|
|
+ for (int i = 0; i < list_mats.Count(); i++)
|
|
|
+ {
|
|
|
+ if (i == 0)//首张
|
|
|
+ {
|
|
|
+ matCombin.Add(new Mat(list_mats[i], new OpenCvSharp.Rect(0, 0, list_mats[i].Width - OverlapParam - 100, list_mats[i].Height)));
|
|
|
+ matStitch.Add(new Mat(list_mats[i], new OpenCvSharp.Rect(list_mats[i].Width - OverlapParam - 100, 0, OverlapParam + 100, list_mats[i].Height)));
|
|
|
+ }
|
|
|
+ else if (i == list_mats.Count() - 1)//末张
|
|
|
+ {
|
|
|
+ matStitch.Add(new Mat(list_mats[i], new OpenCvSharp.Rect(0, 0, OverlapParam + 100, list_mats[i].Height)));
|
|
|
+ matCombin.Add(new Mat(list_mats[i], new OpenCvSharp.Rect(OverlapParam + 100, 0, list_mats[i].Width - OverlapParam - 100, list_mats[i].Height)));
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ matStitch.Add(new Mat(list_mats[i], new OpenCvSharp.Rect(0, 0, OverlapParam + 100, list_mats[i].Height)));
|
|
|
+ matCombin.Add(new Mat(list_mats[i], new OpenCvSharp.Rect(OverlapParam + 100, 0, list_mats[i].Width - (OverlapParam + 100) * 2, list_mats[i].Height)));
|
|
|
+ matStitch.Add(new Mat(list_mats[i], new OpenCvSharp.Rect(list_mats[i].Width - OverlapParam - 100, 0, OverlapParam + 100, list_mats[i].Height)));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int i = 0; i < matStitch.Count; i += 2)
|
|
|
+ {
|
|
|
+ if (matStitch.Count == 1)
|
|
|
+ {
|
|
|
+ matCombin.Insert(i + 1, matStitch[i]);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ matCombin.Insert(i + 1, StitchImageX((int)(OverlapParam / 2 * 1.2), type, matStitch[i], matStitch[i + 1]));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ Mat pano = new OpenCvSharp.Mat();
|
|
|
+ Cv2.HConcat(matCombin.ToArray(), pano);
|
|
|
+
|
|
|
+ return pano;
|
|
|
+ }
|
|
|
+
|
|
|
+ public Mat CombinImageY(Mat[] list_mats, int OverlapParam, int type)
|
|
|
+ {
|
|
|
+ List<Mat> matStitch = new List<Mat>();//拼接
|
|
|
+ List<Mat> matCombin = new List<Mat>();//合并
|
|
|
+ for (int i = 0; i < list_mats.Count(); i++)
|
|
|
+ {
|
|
|
+ if (i == 0)//首张
|
|
|
+ {
|
|
|
+ matCombin.Add(new Mat(list_mats[i], new OpenCvSharp.Rect(0, 0, list_mats[i].Width, list_mats[i].Height - OverlapParam - 100)));
|
|
|
+ matStitch.Add(new Mat(list_mats[i], new OpenCvSharp.Rect(0, list_mats[i].Height - OverlapParam - 100, list_mats[i].Width, OverlapParam + 100)));
|
|
|
+ }
|
|
|
+ else if (i == list_mats.Count() - 1)//末张
|
|
|
+ {
|
|
|
+ matStitch.Add(new Mat(list_mats[i], new OpenCvSharp.Rect(0, 0, list_mats[i].Width, OverlapParam + 100)));
|
|
|
+ matCombin.Add(new Mat(list_mats[i], new OpenCvSharp.Rect(0, OverlapParam + 100, list_mats[i].Width, list_mats[i].Height - OverlapParam - 100)));
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ matStitch.Add(new Mat(list_mats[i], new OpenCvSharp.Rect(0, 0, list_mats[i].Width, OverlapParam + 100)));
|
|
|
+ matCombin.Add(new Mat(list_mats[i], new OpenCvSharp.Rect(0, OverlapParam + 100, list_mats[i].Width, list_mats[i].Height - (OverlapParam + 100) * 2)));
|
|
|
+ matStitch.Add(new Mat(list_mats[i], new OpenCvSharp.Rect(0, list_mats[i].Height - OverlapParam - 100, list_mats[i].Width, OverlapParam + 100)));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int i = 0; i < matStitch.Count; i += 2)
|
|
|
+ {
|
|
|
+ if (matStitch.Count == 1)
|
|
|
+ {
|
|
|
+ matCombin.Insert(i + 1, matStitch[i]);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ matCombin.Insert(i + 1, StitchImageY(OverlapParam, type, matStitch[i], matStitch[i + 1]));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ Mat pano = new OpenCvSharp.Mat();
|
|
|
+ Cv2.VConcat(matCombin.ToArray(), pano);
|
|
|
+
|
|
|
+ return pano;
|
|
|
+ }
|
|
|
+
|
|
|
+ public struct MStitch
|
|
|
+ {
|
|
|
+ public int Pwidth;//单幅图像的宽度
|
|
|
+ public int Pheight;//单幅图像的高度
|
|
|
+ public int W_min;//最小的重叠区域宽度
|
|
|
+ public int W_max;//最大的重叠区域宽度
|
|
|
+ public int H_min;//最小的重叠区域高度
|
|
|
+ public double minval;//块过滤阈值
|
|
|
+ public Mat im;//图像信息
|
|
|
+ }
|
|
|
+ public struct ImageParam
|
|
|
+ {
|
|
|
+ public int W_box;//宽度信息
|
|
|
+ public int H_box;//高度信息
|
|
|
+ public int bdown;//上下信息
|
|
|
+ public MStitch mStitch; //参数结构
|
|
|
+ public Mat im;//图像信息
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// 横向拼图
|
|
|
+ /// </summary>
|
|
|
+ public Mat StitchImageXGrid(int min_w, int type, Mat newImg1, Mat newImg2)
|
|
|
+ {
|
|
|
+ MStitch mStitch = new MStitch();
|
|
|
+ mStitch.Pwidth = newImg1.Width;
|
|
|
+ mStitch.Pheight = newImg1.Height;
|
|
|
+ mStitch.W_min = min_w - 50;
|
|
|
+ mStitch.W_max = min_w + 50;
|
|
|
+ mStitch.H_min = newImg1.Height;
|
|
|
+ mStitch.minval = 255;
|
|
|
+ mStitch.im = newImg1;
|
|
|
+
|
|
|
+ ImageParam imageParam = Fun_Match(newImg2, mStitch);
|
|
|
+ imageParam.im = newImg2;
|
|
|
+
|
|
|
+ if (type == 2)
|
|
|
+ {
|
|
|
+ return Fun_Stitch(imageParam);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ return Fun_StitchRGB(imageParam);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// 纵向拼图
|
|
|
+ /// </summary>
|
|
|
+ public Mat StitchImageYGrid(int min_w, int type, Mat newImg1, Mat newImg2)
|
|
|
+ {
|
|
|
+ Cv2.Transpose(newImg1, newImg1);
|
|
|
+ Cv2.Flip(newImg1, newImg1, FlipMode.X);
|
|
|
+
|
|
|
+ Cv2.Transpose(newImg2, newImg2);
|
|
|
+ Cv2.Flip(newImg2, newImg2, FlipMode.X);
|
|
|
+
|
|
|
+ MStitch mStitch = new MStitch();
|
|
|
+ mStitch.Pwidth = newImg1.Width;
|
|
|
+ mStitch.Pheight = newImg1.Height;
|
|
|
+ mStitch.W_min = min_w - 50;
|
|
|
+ mStitch.W_max = min_w + 50;
|
|
|
+ mStitch.H_min = newImg1.Height;
|
|
|
+ mStitch.minval = 255;
|
|
|
+ mStitch.im = newImg1;
|
|
|
+
|
|
|
+ ImageParam imageParam = Fun_Match(newImg2, mStitch);
|
|
|
+ imageParam.im = newImg2;
|
|
|
+
|
|
|
+ Mat result = type == 2 ? Fun_Stitch(imageParam) : Fun_StitchRGB(imageParam);
|
|
|
+
|
|
|
+ Cv2.Transpose(result, result);
|
|
|
+ Cv2.Flip(result, result, FlipMode.Y);
|
|
|
+
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// 横向拼图
|
|
|
+ /// </summary>
|
|
|
+ public Mat StitchImageX(int min_w, int type, Mat newImg1, Mat newImg2)
|
|
|
+ {
|
|
|
+ MStitch mStitch = new MStitch();
|
|
|
+ mStitch.Pwidth = newImg1.Width;
|
|
|
+ mStitch.Pheight = newImg1.Height;
|
|
|
+ mStitch.W_min = min_w;
|
|
|
+ mStitch.W_max = min_w;
|
|
|
+ mStitch.H_min = newImg1.Height;
|
|
|
+ mStitch.minval = 255;
|
|
|
+ mStitch.im = newImg1;
|
|
|
+
|
|
|
+ ImageParam imageParam = Fun_Match(newImg2, mStitch);
|
|
|
+ imageParam.im = newImg2;
|
|
|
+
|
|
|
+ if (type == 2)
|
|
|
+ {
|
|
|
+ return Fun_Stitch(imageParam);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ return Fun_StitchRGB(imageParam);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// 纵向拼图
|
|
|
+ /// </summary>
|
|
|
+ public Mat StitchImageY(int min_w, int type, Mat newImg1, Mat newImg2)
|
|
|
+ {
|
|
|
+ Cv2.Transpose(newImg1, newImg1);
|
|
|
+ Cv2.Flip(newImg1, newImg1, FlipMode.X);
|
|
|
+
|
|
|
+ Cv2.Transpose(newImg2, newImg2);
|
|
|
+ Cv2.Flip(newImg2, newImg2, FlipMode.X);
|
|
|
+
|
|
|
+ MStitch mStitch = new MStitch();
|
|
|
+ mStitch.Pwidth = newImg1.Width;
|
|
|
+ mStitch.Pheight = newImg1.Height;
|
|
|
+ mStitch.W_min = min_w - 50;
|
|
|
+ mStitch.W_max = min_w - 50;
|
|
|
+ mStitch.H_min = newImg1.Height - 20;
|
|
|
+ mStitch.minval = 255;
|
|
|
+ mStitch.im = newImg1;
|
|
|
+
|
|
|
+ ImageParam imageParam = Fun_Match(newImg2, mStitch);
|
|
|
+ imageParam.im = newImg2;
|
|
|
+
|
|
|
+ Mat result = type == 2 ? Fun_Stitch(imageParam) : Fun_StitchRGB(imageParam);
|
|
|
+
|
|
|
+ Cv2.Transpose(result, result);
|
|
|
+ Cv2.Flip(result, result, FlipMode.Y);
|
|
|
+
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+ public static ImageParam Fun_Match(Mat im2, MStitch mStitch)
|
|
|
+ {
|
|
|
+ ImageParam imageParam = new ImageParam();
|
|
|
+ double imsum = 0;
|
|
|
+ int x1 = 0;
|
|
|
+ int y1 = 0;
|
|
|
+ int x2 = 0;
|
|
|
+ int y2 = 0;
|
|
|
+ int w_ind = 0;
|
|
|
+ int h_ind = 0; //
|
|
|
+ for (int w = mStitch.W_min; w <= mStitch.W_max; w++)
|
|
|
+ {
|
|
|
+ for (int h = mStitch.H_min; h <= mStitch.Pheight; h++)
|
|
|
+ {
|
|
|
+ imsum = 0;//块差分集初始化
|
|
|
+ x2 = 1;
|
|
|
+ for (x1 = mStitch.Pwidth - w; x1 <= mStitch.Pwidth; x1 += 5)
|
|
|
+ {
|
|
|
+ y2 = 1;
|
|
|
+ for (y1 = mStitch.Pheight - h + 1; y1 <= mStitch.Pheight; y1 += 5)
|
|
|
+ {
|
|
|
+ //块差分集计算
|
|
|
+ CheckRC(ref x1, ref y1, mStitch.im);
|
|
|
+ CheckRC(ref x2, ref y2, im2);
|
|
|
+ imsum = imsum + Math.Abs(mStitch.im.At<Vec3b>(y1, x1).Item0 - im2.At<Vec3b>(y2, x2).Item0);
|
|
|
+ y2 = y2 + 5;
|
|
|
+ }
|
|
|
+ x2 = x2 + 5;
|
|
|
+ }
|
|
|
+ //阈值更新
|
|
|
+ if (imsum * 5 * 5 <= mStitch.minval * w * h)
|
|
|
+ {
|
|
|
+ mStitch.minval = imsum * 5 * 5 / (w * h);
|
|
|
+ w_ind = w;
|
|
|
+ h_ind = h;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ imageParam.W_box = w_ind;
|
|
|
+ imageParam.H_box = h_ind;
|
|
|
+ imageParam.bdown = 1;
|
|
|
+
|
|
|
+ //在下窗口所有匹配块内进行搜索
|
|
|
+ Parallel.For(mStitch.W_min, mStitch.W_max, w =>
|
|
|
+ {
|
|
|
+ Parallel.For(mStitch.H_min, mStitch.Pheight, h =>
|
|
|
+ {
|
|
|
+ imsum = 0;//块差分集初始化
|
|
|
+ x2 = 1;
|
|
|
+ for (x1 = mStitch.Pwidth - w; x1 <= mStitch.Pwidth; x1 += 5)
|
|
|
+ {
|
|
|
+ y1 = 1;
|
|
|
+ for (y2 = mStitch.Pheight - h + 1; y2 <= mStitch.Pheight; y2 += 5)
|
|
|
+ {
|
|
|
+ //块差分集计算
|
|
|
+ CheckRC(ref x1, ref y1, mStitch.im);
|
|
|
+ CheckRC(ref x2, ref y2, im2);
|
|
|
+ imsum = imsum + Math.Abs(mStitch.im.At<Vec3b>(y1, x1).Item0 - im2.At<Vec3b>(y2, x2).Item0);
|
|
|
+ y1 = y1 + 5;
|
|
|
+ }
|
|
|
+ x2 = x2 + 5;
|
|
|
+ }
|
|
|
+ //阈值更新
|
|
|
+ if (imsum * 5 * 5 <= mStitch.minval * w * h)
|
|
|
+ {
|
|
|
+ mStitch.minval = imsum * 5 * 5 / (w * h);
|
|
|
+ w_ind = w;
|
|
|
+ h_ind = h;
|
|
|
+ imageParam.bdown = 0;
|
|
|
+ }
|
|
|
+ });
|
|
|
+ });
|
|
|
+
|
|
|
+ imageParam.mStitch = mStitch;
|
|
|
+
|
|
|
+ return imageParam;
|
|
|
+ }
|
|
|
+
|
|
|
+ public static void CheckRC(ref int x, ref int y, Mat im)
|
|
|
+ {
|
|
|
+ //图像矩阵访问有效性检测
|
|
|
+ // 输入参数:
|
|
|
+ // x——列
|
|
|
+ // y——行
|
|
|
+ // im——图像矩阵
|
|
|
+ // 输出参数:
|
|
|
+ // x——列
|
|
|
+ // y——行
|
|
|
+ y = Math.Max(y, 1);
|
|
|
+ y = Math.Min(y, im.Height - 1);
|
|
|
+ x = Math.Max(x, 1);
|
|
|
+ x = Math.Min(x, im.Width - 1);
|
|
|
+ }
|
|
|
+
|
|
|
+ public Mat Fun_Stitch(ImageParam imageParam)
|
|
|
+ {
|
|
|
+ //图像融合
|
|
|
+ //输入参数:
|
|
|
+ //im2——待融合图像
|
|
|
+ //W_box——宽度信息
|
|
|
+ //H_box——高度信息
|
|
|
+ //bdown——上下信息
|
|
|
+ //MStitch——参数结构
|
|
|
+ //输出参数:
|
|
|
+ //MStitch——参数结构
|
|
|
+ //im——融合图像
|
|
|
+
|
|
|
+ Mat img = imageParam.im;
|
|
|
+ int x1 = 0;
|
|
|
+ int y1 = 0;
|
|
|
+ int x2 = 0;
|
|
|
+ int y2 = 0;
|
|
|
+ double w = 0.5; //融合权值
|
|
|
+
|
|
|
+ if (imageParam.bdown == 1)
|
|
|
+ {
|
|
|
+ //下区域重叠
|
|
|
+ x2 = 1;
|
|
|
+ //融合重叠区域
|
|
|
+ for (x1 = imageParam.mStitch.Pwidth - imageParam.W_box; x1 < imageParam.mStitch.Pwidth; x1++)
|
|
|
+ {
|
|
|
+ y2 = 1;
|
|
|
+ for (y1 = imageParam.mStitch.Pheight - imageParam.H_box + 1; y1 < imageParam.mStitch.Pheight; y1++)
|
|
|
+ {
|
|
|
+ //安全性检测
|
|
|
+ CheckRC(ref x1, ref y1, imageParam.mStitch.im);
|
|
|
+ CheckRC(ref x2, ref y2, imageParam.im);
|
|
|
+ //融合权值
|
|
|
+ w = (double)x2 / (double)imageParam.W_box;
|
|
|
+ //加权融合
|
|
|
+ double ColorRGB = imageParam.mStitch.im.At<Vec3b>(y1, x1).Item0 * (1.0 - w) + imageParam.im.At<Vec3b>(y2, x2).Item0 * w;
|
|
|
+ imageParam.mStitch.im.Set<Vec3b>(y1, x1, new Vec3b((byte)ColorRGB, (byte)ColorRGB, (byte)ColorRGB));
|
|
|
+ y2 = y2 + 1;
|
|
|
+ }
|
|
|
+ x2 = x2 + 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ //上区域重叠
|
|
|
+ x2 = 1;
|
|
|
+ //融合重叠区域
|
|
|
+ for (x1 = imageParam.mStitch.Pwidth - imageParam.W_box; x1 < imageParam.mStitch.Pwidth; x1++)
|
|
|
+ {
|
|
|
+ y2 = 1;
|
|
|
+ for (y1 = imageParam.mStitch.Pheight - imageParam.H_box + 1; y1 < imageParam.mStitch.Pheight; y1++)
|
|
|
+ {
|
|
|
+ //安全性检测
|
|
|
+ CheckRC(ref x1, ref y1, imageParam.mStitch.im);
|
|
|
+ CheckRC(ref x2, ref y2, imageParam.im);
|
|
|
+ //融合权值
|
|
|
+ w = (double)x2 / (double)imageParam.W_box;
|
|
|
+ //加权融合
|
|
|
+ double ColorRGB = imageParam.mStitch.im.At<Vec3b>(y1, x1).Item0 * (1.0 - w) + imageParam.im.At<Vec3b>(y2, x2).Item0 * w;
|
|
|
+ imageParam.mStitch.im.Set<Vec3b>(y1, x1, new Vec3b((byte)ColorRGB, (byte)ColorRGB, (byte)ColorRGB));
|
|
|
+
|
|
|
+ y2 = y2 + 1;
|
|
|
+ }
|
|
|
+ x2 = x2 + 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //最终图
|
|
|
+ img = new Mat(imageParam.mStitch.Pheight, imageParam.mStitch.Pwidth + imageParam.im.Width - x2 + 1, MatType.CV_8UC3);
|
|
|
+
|
|
|
+ //分离出重叠区域
|
|
|
+ OpenCvSharp.Rect m_select = new OpenCvSharp.Rect(x2 - 1, 0, imageParam.im.Width - x2 + 1, imageParam.mStitch.Pheight);
|
|
|
+ Mat imgSwitch = new Mat(imageParam.im, m_select);
|
|
|
+ Cv2.HConcat(imageParam.mStitch.im, imgSwitch, img);
|
|
|
+
|
|
|
+ return img;
|
|
|
+ }
|
|
|
+
|
|
|
+ public Mat Fun_StitchRGB(ImageParam imageParam)
|
|
|
+ {
|
|
|
+ //图像融合
|
|
|
+ //输入参数:
|
|
|
+ //im2——待融合图像
|
|
|
+ //W_box——宽度信息
|
|
|
+ //H_box——高度信息
|
|
|
+ //bdown——上下信息
|
|
|
+ //MStitch——参数结构
|
|
|
+ //输出参数:
|
|
|
+ //MStitch——参数结构
|
|
|
+ //im——融合图像
|
|
|
+
|
|
|
+ Mat img = imageParam.im;
|
|
|
+ int x1 = 0;
|
|
|
+ int y1 = 0;
|
|
|
+ int x2 = 0;
|
|
|
+ int y2 = 0;
|
|
|
+ double w = 0.5; //融合权值
|
|
|
+
|
|
|
+ if (imageParam.bdown == 1)
|
|
|
+ {
|
|
|
+ //下区域重叠
|
|
|
+ x2 = 1;
|
|
|
+ //融合重叠区域
|
|
|
+ for (x1 = imageParam.mStitch.Pwidth - imageParam.W_box; x1 < imageParam.mStitch.Pwidth; x1++)
|
|
|
+ {
|
|
|
+ y2 = 1;
|
|
|
+ for (y1 = imageParam.mStitch.Pheight - imageParam.H_box + 1; y1 < imageParam.mStitch.Pheight; y1++)
|
|
|
+ {
|
|
|
+ //安全性检测
|
|
|
+ CheckRC(ref x1, ref y1, imageParam.mStitch.im);
|
|
|
+ CheckRC(ref x2, ref y2, imageParam.im);
|
|
|
+ //融合权值
|
|
|
+ w = (double)x2 / (double)imageParam.W_box;
|
|
|
+ //加权融合
|
|
|
+ double ColorR = imageParam.mStitch.im.At<Vec3b>(y1, x1).Item0 * (1.0 - w) + imageParam.im.At<Vec3b>(y2, x2).Item0 * w;
|
|
|
+ double ColorG = imageParam.mStitch.im.At<Vec3b>(y1, x1).Item1 * (1.0 - w) + imageParam.im.At<Vec3b>(y2, x2).Item1 * w;
|
|
|
+ double ColorB = imageParam.mStitch.im.At<Vec3b>(y1, x1).Item2 * (1.0 - w) + imageParam.im.At<Vec3b>(y2, x2).Item2 * w;
|
|
|
+ if (imageParam.mStitch.im.At<Vec3b>(y1, x1).Item0 == imageParam.mStitch.im.At<Vec3b>(y1, x1).Item1 &&
|
|
|
+ imageParam.mStitch.im.At<Vec3b>(y1, x1).Item1 == imageParam.mStitch.im.At<Vec3b>(y1, x1).Item2 &&
|
|
|
+ imageParam.im.At<Vec3b>(y2, x2).Item0 == imageParam.im.At<Vec3b>(y2, x2).Item1 &&
|
|
|
+ imageParam.im.At<Vec3b>(y2, x2).Item1 == imageParam.im.At<Vec3b>(y2, x2).Item2)
|
|
|
+ {
|
|
|
+ imageParam.mStitch.im.Set<Vec3b>(y1, x1, new Vec3b((byte)ColorR, (byte)ColorG, (byte)ColorB));
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ y2 = y2 + 1;
|
|
|
+ }
|
|
|
+ x2 = x2 + 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ //上区域重叠
|
|
|
+ x2 = 1;
|
|
|
+ //融合重叠区域
|
|
|
+ for (x1 = imageParam.mStitch.Pwidth - imageParam.W_box; x1 < imageParam.mStitch.Pwidth; x1++)
|
|
|
+ {
|
|
|
+ y2 = 1;
|
|
|
+ for (y1 = imageParam.mStitch.Pheight - imageParam.H_box + 1; y1 < imageParam.mStitch.Pheight; y1++)
|
|
|
+ {
|
|
|
+ //安全性检测
|
|
|
+ CheckRC(ref x1, ref y1, imageParam.mStitch.im);
|
|
|
+ CheckRC(ref x2, ref y2, imageParam.im);
|
|
|
+ //融合权值
|
|
|
+ w = (double)x2 / (double)imageParam.W_box;
|
|
|
+ //加权融合
|
|
|
+ double ColorR = imageParam.mStitch.im.At<Vec3b>(y1, x1).Item0 * (1.0 - w) + imageParam.im.At<Vec3b>(y2, x2).Item0 * w;
|
|
|
+ double ColorG = imageParam.mStitch.im.At<Vec3b>(y1, x1).Item1 * (1.0 - w) + imageParam.im.At<Vec3b>(y2, x2).Item1 * w;
|
|
|
+ double ColorB = imageParam.mStitch.im.At<Vec3b>(y1, x1).Item2 * (1.0 - w) + imageParam.im.At<Vec3b>(y2, x2).Item2 * w;
|
|
|
+ if (imageParam.mStitch.im.At<Vec3b>(y1, x1).Item0 == imageParam.mStitch.im.At<Vec3b>(y1, x1).Item1 &&
|
|
|
+ imageParam.mStitch.im.At<Vec3b>(y1, x1).Item1 == imageParam.mStitch.im.At<Vec3b>(y1, x1).Item2 &&
|
|
|
+ imageParam.im.At<Vec3b>(y2, x2).Item0 == imageParam.im.At<Vec3b>(y2, x2).Item1 &&
|
|
|
+ imageParam.im.At<Vec3b>(y2, x2).Item1 == imageParam.im.At<Vec3b>(y2, x2).Item2)
|
|
|
+ {
|
|
|
+ imageParam.mStitch.im.Set<Vec3b>(y1, x1, new Vec3b((byte)ColorR, (byte)ColorG, (byte)ColorB));
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ y2 = y2 + 1;
|
|
|
+ }
|
|
|
+ x2 = x2 + 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //最终图
|
|
|
+ img = new Mat(imageParam.mStitch.Pheight, imageParam.mStitch.Pwidth + imageParam.im.Width - x2 + 1, MatType.CV_8UC3);
|
|
|
+
|
|
|
+ //分离出重叠区域
|
|
|
+ OpenCvSharp.Rect m_select = new OpenCvSharp.Rect(x2 - 1, 0, imageParam.im.Width - x2 + 1, imageParam.mStitch.Pheight);
|
|
|
+ Mat imgSwitch = new Mat(imageParam.im, m_select);
|
|
|
+ Cv2.HConcat(imageParam.mStitch.im, imgSwitch, img);
|
|
|
+
|
|
|
+ return img;
|
|
|
+ }
|
|
|
+ #endregion
|
|
|
}
|
|
|
}
|