123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809 |
- // Copyright John Maddock 2008.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- //
- // Wrapper that works with mpfr_class defined in gmpfrxx.h
- // See http://math.berkeley.edu/~wilken/code/gmpfrxx/
- // Also requires the gmp and mpfr libraries.
- //
- #ifndef BOOST_MATH_E_FLOAT_BINDINGS_HPP
- #define BOOST_MATH_E_FLOAT_BINDINGS_HPP
- #include <boost/config.hpp>
- #include <e_float/e_float.h>
- #include <functions/functions.h>
- #include <boost/math/tools/precision.hpp>
- #include <boost/math/tools/real_cast.hpp>
- #include <boost/math/policies/policy.hpp>
- #include <boost/math/distributions/fwd.hpp>
- #include <boost/math/special_functions/math_fwd.hpp>
- #include <boost/math/special_functions/fpclassify.hpp>
- #include <boost/math/bindings/detail/big_digamma.hpp>
- #include <boost/math/bindings/detail/big_lanczos.hpp>
- #include <boost/lexical_cast.hpp>
- namespace boost{ namespace math{ namespace ef{
- class e_float
- {
- public:
- // Constructors:
- e_float() {}
- e_float(const ::e_float& c) : m_value(c){}
- e_float(char c)
- {
- m_value = ::e_float(c);
- }
- #ifndef BOOST_NO_INTRINSIC_WCHAR_T
- e_float(wchar_t c)
- {
- m_value = ::e_float(c);
- }
- #endif
- e_float(unsigned char c)
- {
- m_value = ::e_float(c);
- }
- e_float(signed char c)
- {
- m_value = ::e_float(c);
- }
- e_float(unsigned short c)
- {
- m_value = ::e_float(c);
- }
- e_float(short c)
- {
- m_value = ::e_float(c);
- }
- e_float(unsigned int c)
- {
- m_value = ::e_float(c);
- }
- e_float(int c)
- {
- m_value = ::e_float(c);
- }
- e_float(unsigned long c)
- {
- m_value = ::e_float((UINT64)c);
- }
- e_float(long c)
- {
- m_value = ::e_float((INT64)c);
- }
- #ifdef BOOST_HAS_LONG_LONG
- e_float(boost::ulong_long_type c)
- {
- m_value = ::e_float(c);
- }
- e_float(boost::long_long_type c)
- {
- m_value = ::e_float(c);
- }
- #endif
- e_float(float c)
- {
- assign_large_real(c);
- }
- e_float(double c)
- {
- assign_large_real(c);
- }
- e_float(long double c)
- {
- assign_large_real(c);
- }
- // Assignment:
- e_float& operator=(char c) { m_value = ::e_float(c); return *this; }
- e_float& operator=(unsigned char c) { m_value = ::e_float(c); return *this; }
- e_float& operator=(signed char c) { m_value = ::e_float(c); return *this; }
- #ifndef BOOST_NO_INTRINSIC_WCHAR_T
- e_float& operator=(wchar_t c) { m_value = ::e_float(c); return *this; }
- #endif
- e_float& operator=(short c) { m_value = ::e_float(c); return *this; }
- e_float& operator=(unsigned short c) { m_value = ::e_float(c); return *this; }
- e_float& operator=(int c) { m_value = ::e_float(c); return *this; }
- e_float& operator=(unsigned int c) { m_value = ::e_float(c); return *this; }
- e_float& operator=(long c) { m_value = ::e_float((INT64)c); return *this; }
- e_float& operator=(unsigned long c) { m_value = ::e_float((UINT64)c); return *this; }
- #ifdef BOOST_HAS_LONG_LONG
- e_float& operator=(boost::long_long_type c) { m_value = ::e_float(c); return *this; }
- e_float& operator=(boost::ulong_long_type c) { m_value = ::e_float(c); return *this; }
- #endif
- e_float& operator=(float c) { assign_large_real(c); return *this; }
- e_float& operator=(double c) { assign_large_real(c); return *this; }
- e_float& operator=(long double c) { assign_large_real(c); return *this; }
- // Access:
- ::e_float& value(){ return m_value; }
- ::e_float const& value()const{ return m_value; }
- // Member arithmetic:
- e_float& operator+=(const e_float& other)
- { m_value += other.value(); return *this; }
- e_float& operator-=(const e_float& other)
- { m_value -= other.value(); return *this; }
- e_float& operator*=(const e_float& other)
- { m_value *= other.value(); return *this; }
- e_float& operator/=(const e_float& other)
- { m_value /= other.value(); return *this; }
- e_float operator-()const
- { return -m_value; }
- e_float const& operator+()const
- { return *this; }
- private:
- ::e_float m_value;
- template <class V>
- void assign_large_real(const V& a)
- {
- using std::frexp;
- using std::ldexp;
- using std::floor;
- if (a == 0) {
- m_value = ::ef::zero();
- return;
- }
- if (a == 1) {
- m_value = ::ef::one();
- return;
- }
- if ((boost::math::isinf)(a))
- {
- m_value = a > 0 ? m_value.my_value_inf() : -m_value.my_value_inf();
- return;
- }
- if((boost::math::isnan)(a))
- {
- m_value = m_value.my_value_nan();
- return;
- }
- int e;
- long double f, term;
- ::e_float t;
- m_value = ::ef::zero();
- f = frexp(a, &e);
- ::e_float shift = ::ef::pow2(30);
- while(f)
- {
- // extract 30 bits from f:
- f = ldexp(f, 30);
- term = floor(f);
- e -= 30;
- m_value *= shift;
- m_value += ::e_float(static_cast<INT64>(term));
- f -= term;
- }
- m_value *= ::ef::pow2(e);
- }
- };
- // Non-member arithmetic:
- inline e_float operator+(const e_float& a, const e_float& b)
- {
- e_float result(a);
- result += b;
- return result;
- }
- inline e_float operator-(const e_float& a, const e_float& b)
- {
- e_float result(a);
- result -= b;
- return result;
- }
- inline e_float operator*(const e_float& a, const e_float& b)
- {
- e_float result(a);
- result *= b;
- return result;
- }
- inline e_float operator/(const e_float& a, const e_float& b)
- {
- e_float result(a);
- result /= b;
- return result;
- }
- // Comparison:
- inline bool operator == (const e_float& a, const e_float& b)
- { return a.value() == b.value() ? true : false; }
- inline bool operator != (const e_float& a, const e_float& b)
- { return a.value() != b.value() ? true : false;}
- inline bool operator < (const e_float& a, const e_float& b)
- { return a.value() < b.value() ? true : false; }
- inline bool operator <= (const e_float& a, const e_float& b)
- { return a.value() <= b.value() ? true : false; }
- inline bool operator > (const e_float& a, const e_float& b)
- { return a.value() > b.value() ? true : false; }
- inline bool operator >= (const e_float& a, const e_float& b)
- { return a.value() >= b.value() ? true : false; }
- std::istream& operator >> (std::istream& is, e_float& f)
- {
- return is >> f.value();
- }
- std::ostream& operator << (std::ostream& os, const e_float& f)
- {
- return os << f.value();
- }
- inline e_float fabs(const e_float& v)
- {
- return ::ef::fabs(v.value());
- }
- inline e_float abs(const e_float& v)
- {
- return ::ef::fabs(v.value());
- }
- inline e_float floor(const e_float& v)
- {
- return ::ef::floor(v.value());
- }
- inline e_float ceil(const e_float& v)
- {
- return ::ef::ceil(v.value());
- }
- inline e_float pow(const e_float& v, const e_float& w)
- {
- return ::ef::pow(v.value(), w.value());
- }
- inline e_float pow(const e_float& v, int i)
- {
- return ::ef::pow(v.value(), ::e_float(i));
- }
- inline e_float exp(const e_float& v)
- {
- return ::ef::exp(v.value());
- }
- inline e_float log(const e_float& v)
- {
- return ::ef::log(v.value());
- }
- inline e_float sqrt(const e_float& v)
- {
- return ::ef::sqrt(v.value());
- }
- inline e_float sin(const e_float& v)
- {
- return ::ef::sin(v.value());
- }
- inline e_float cos(const e_float& v)
- {
- return ::ef::cos(v.value());
- }
- inline e_float tan(const e_float& v)
- {
- return ::ef::tan(v.value());
- }
- inline e_float acos(const e_float& v)
- {
- return ::ef::acos(v.value());
- }
- inline e_float asin(const e_float& v)
- {
- return ::ef::asin(v.value());
- }
- inline e_float atan(const e_float& v)
- {
- return ::ef::atan(v.value());
- }
- inline e_float atan2(const e_float& v, const e_float& u)
- {
- return ::ef::atan2(v.value(), u.value());
- }
- inline e_float ldexp(const e_float& v, int e)
- {
- return v.value() * ::ef::pow2(e);
- }
- inline e_float frexp(const e_float& v, int* expon)
- {
- double d;
- INT64 i;
- v.value().extract_parts(d, i);
- *expon = static_cast<int>(i);
- return v.value() * ::ef::pow2(-i);
- }
- inline e_float sinh (const e_float& x)
- {
- return ::ef::sinh(x.value());
- }
- inline e_float cosh (const e_float& x)
- {
- return ::ef::cosh(x.value());
- }
- inline e_float tanh (const e_float& x)
- {
- return ::ef::tanh(x.value());
- }
- inline e_float asinh (const e_float& x)
- {
- return ::ef::asinh(x.value());
- }
- inline e_float acosh (const e_float& x)
- {
- return ::ef::acosh(x.value());
- }
- inline e_float atanh (const e_float& x)
- {
- return ::ef::atanh(x.value());
- }
- e_float fmod(const e_float& v1, const e_float& v2)
- {
- e_float n;
- if(v1 < 0)
- n = ceil(v1 / v2);
- else
- n = floor(v1 / v2);
- return v1 - n * v2;
- }
- } namespace detail{
- template <>
- inline int fpclassify_imp< boost::math::ef::e_float> BOOST_NO_MACRO_EXPAND(boost::math::ef::e_float x, const generic_tag<true>&)
- {
- if(x.value().isnan())
- return FP_NAN;
- if(x.value().isinf())
- return FP_INFINITE;
- if(x == 0)
- return FP_ZERO;
- return FP_NORMAL;
- }
- } namespace ef{
- template <class Policy>
- inline int itrunc(const e_float& v, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- e_float r = boost::math::trunc(v, pol);
- if(fabs(r) > (std::numeric_limits<int>::max)())
- return static_cast<int>(policies::raise_rounding_error("boost::math::itrunc<%1%>(%1%)", 0, 0, v, pol));
- return static_cast<int>(r.value().extract_int64());
- }
- template <class Policy>
- inline long ltrunc(const e_float& v, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- e_float r = boost::math::trunc(v, pol);
- if(fabs(r) > (std::numeric_limits<long>::max)())
- return static_cast<long>(policies::raise_rounding_error("boost::math::ltrunc<%1%>(%1%)", 0, 0L, v, pol));
- return static_cast<long>(r.value().extract_int64());
- }
- #ifdef BOOST_HAS_LONG_LONG
- template <class Policy>
- inline boost::long_long_type lltrunc(const e_float& v, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- e_float r = boost::math::trunc(v, pol);
- if(fabs(r) > (std::numeric_limits<boost::long_long_type>::max)())
- return static_cast<boost::long_long_type>(policies::raise_rounding_error("boost::math::lltrunc<%1%>(%1%)", 0, v, 0LL, pol).value().extract_int64());
- return static_cast<boost::long_long_type>(r.value().extract_int64());
- }
- #endif
- template <class Policy>
- inline int iround(const e_float& v, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- e_float r = boost::math::round(v, pol);
- if(fabs(r) > (std::numeric_limits<int>::max)())
- return static_cast<int>(policies::raise_rounding_error("boost::math::iround<%1%>(%1%)", 0, v, 0, pol).value().extract_int64());
- return static_cast<int>(r.value().extract_int64());
- }
- template <class Policy>
- inline long lround(const e_float& v, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- e_float r = boost::math::round(v, pol);
- if(fabs(r) > (std::numeric_limits<long>::max)())
- return static_cast<long int>(policies::raise_rounding_error("boost::math::lround<%1%>(%1%)", 0, v, 0L, pol).value().extract_int64());
- return static_cast<long int>(r.value().extract_int64());
- }
- #ifdef BOOST_HAS_LONG_LONG
- template <class Policy>
- inline boost::long_long_type llround(const e_float& v, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- e_float r = boost::math::round(v, pol);
- if(fabs(r) > (std::numeric_limits<boost::long_long_type>::max)())
- return static_cast<boost::long_long_type>(policies::raise_rounding_error("boost::math::llround<%1%>(%1%)", 0, v, 0LL, pol).value().extract_int64());
- return static_cast<boost::long_long_type>(r.value().extract_int64());
- }
- #endif
- }}}
- namespace std{
- template<>
- class numeric_limits< ::boost::math::ef::e_float> : public numeric_limits< ::e_float>
- {
- public:
- static const ::boost::math::ef::e_float (min) (void)
- {
- return (numeric_limits< ::e_float>::min)();
- }
- static const ::boost::math::ef::e_float (max) (void)
- {
- return (numeric_limits< ::e_float>::max)();
- }
- static const ::boost::math::ef::e_float epsilon (void)
- {
- return (numeric_limits< ::e_float>::epsilon)();
- }
- static const ::boost::math::ef::e_float round_error(void)
- {
- return (numeric_limits< ::e_float>::round_error)();
- }
- static const ::boost::math::ef::e_float infinity (void)
- {
- return (numeric_limits< ::e_float>::infinity)();
- }
- static const ::boost::math::ef::e_float quiet_NaN (void)
- {
- return (numeric_limits< ::e_float>::quiet_NaN)();
- }
- //
- // e_float's supplied digits member is wrong
- // - it should be same the same as digits 10
- // - given that radix is 10.
- //
- static const int digits = digits10;
- };
- } // namespace std
- namespace boost{ namespace math{
- namespace policies{
- template <class Policy>
- struct precision< ::boost::math::ef::e_float, Policy>
- {
- typedef typename Policy::precision_type precision_type;
- typedef digits2<((::std::numeric_limits< ::boost::math::ef::e_float>::digits10 + 1) * 1000L) / 301L> digits_2;
- typedef typename mpl::if_c<
- ((digits_2::value <= precision_type::value)
- || (Policy::precision_type::value <= 0)),
- // Default case, full precision for RealType:
- digits_2,
- // User customised precision:
- precision_type
- >::type type;
- };
- }
- namespace tools{
- template <>
- inline int digits< ::boost::math::ef::e_float>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC( ::boost::math::ef::e_float))
- {
- return ((::std::numeric_limits< ::boost::math::ef::e_float>::digits10 + 1) * 1000L) / 301L;
- }
- template <>
- inline ::boost::math::ef::e_float root_epsilon< ::boost::math::ef::e_float>()
- {
- return detail::root_epsilon_imp(static_cast< ::boost::math::ef::e_float const*>(0), boost::integral_constant<int, 0>());
- }
- template <>
- inline ::boost::math::ef::e_float forth_root_epsilon< ::boost::math::ef::e_float>()
- {
- return detail::forth_root_epsilon_imp(static_cast< ::boost::math::ef::e_float const*>(0), boost::integral_constant<int, 0>());
- }
- }
- namespace lanczos{
- template<class Policy>
- struct lanczos<boost::math::ef::e_float, Policy>
- {
- typedef typename mpl::if_c<
- std::numeric_limits< ::e_float>::digits10 < 22,
- lanczos13UDT,
- typename mpl::if_c<
- std::numeric_limits< ::e_float>::digits10 < 36,
- lanczos22UDT,
- typename mpl::if_c<
- std::numeric_limits< ::e_float>::digits10 < 50,
- lanczos31UDT,
- typename mpl::if_c<
- std::numeric_limits< ::e_float>::digits10 < 110,
- lanczos61UDT,
- undefined_lanczos
- >::type
- >::type
- >::type
- >::type type;
- };
- } // namespace lanczos
- template <class Policy>
- inline boost::math::ef::e_float skewness(const extreme_value_distribution<boost::math::ef::e_float, Policy>& /*dist*/)
- {
- //
- // This is 12 * sqrt(6) * zeta(3) / pi^3:
- // See http://mathworld.wolfram.com/ExtremeValueDistribution.html
- //
- return boost::lexical_cast<boost::math::ef::e_float>("1.1395470994046486574927930193898461120875997958366");
- }
- template <class Policy>
- inline boost::math::ef::e_float skewness(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/)
- {
- // using namespace boost::math::constants;
- return boost::lexical_cast<boost::math::ef::e_float>("0.63111065781893713819189935154422777984404221106391");
- // Computed using NTL at 150 bit, about 50 decimal digits.
- // return 2 * root_pi<RealType>() * pi_minus_three<RealType>() / pow23_four_minus_pi<RealType>();
- }
- template <class Policy>
- inline boost::math::ef::e_float kurtosis(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/)
- {
- // using namespace boost::math::constants;
- return boost::lexical_cast<boost::math::ef::e_float>("3.2450893006876380628486604106197544154170667057995");
- // Computed using NTL at 150 bit, about 50 decimal digits.
- // return 3 - (6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
- // (four_minus_pi<RealType>() * four_minus_pi<RealType>());
- }
- template <class Policy>
- inline boost::math::ef::e_float kurtosis_excess(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/)
- {
- //using namespace boost::math::constants;
- // Computed using NTL at 150 bit, about 50 decimal digits.
- return boost::lexical_cast<boost::math::ef::e_float>("0.2450893006876380628486604106197544154170667057995");
- // return -(6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
- // (four_minus_pi<RealType>() * four_minus_pi<RealType>());
- } // kurtosis
- namespace detail{
- //
- // Version of Digamma accurate to ~100 decimal digits.
- //
- template <class Policy>
- boost::math::ef::e_float digamma_imp(boost::math::ef::e_float x, const boost::integral_constant<int, 0>* , const Policy& pol)
- {
- //
- // This handles reflection of negative arguments, and all our
- // eboost::math::ef::e_floator handling, then forwards to the T-specific approximation.
- //
- BOOST_MATH_STD_USING // ADL of std functions.
- boost::math::ef::e_float result = 0;
- //
- // Check for negative arguments and use reflection:
- //
- if(x < 0)
- {
- // Reflect:
- x = 1 - x;
- // Argument reduction for tan:
- boost::math::ef::e_float remainder = x - floor(x);
- // Shift to negative if > 0.5:
- if(remainder > 0.5)
- {
- remainder -= 1;
- }
- //
- // check for evaluation at a negative pole:
- //
- if(remainder == 0)
- {
- return policies::raise_pole_error<boost::math::ef::e_float>("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol);
- }
- result = constants::pi<boost::math::ef::e_float>() / tan(constants::pi<boost::math::ef::e_float>() * remainder);
- }
- result += big_digamma(x);
- return result;
- }
- boost::math::ef::e_float bessel_i0(boost::math::ef::e_float x)
- {
- static const boost::math::ef::e_float P1[] = {
- boost::lexical_cast<boost::math::ef::e_float>("-2.2335582639474375249e+15"),
- boost::lexical_cast<boost::math::ef::e_float>("-5.5050369673018427753e+14"),
- boost::lexical_cast<boost::math::ef::e_float>("-3.2940087627407749166e+13"),
- boost::lexical_cast<boost::math::ef::e_float>("-8.4925101247114157499e+11"),
- boost::lexical_cast<boost::math::ef::e_float>("-1.1912746104985237192e+10"),
- boost::lexical_cast<boost::math::ef::e_float>("-1.0313066708737980747e+08"),
- boost::lexical_cast<boost::math::ef::e_float>("-5.9545626019847898221e+05"),
- boost::lexical_cast<boost::math::ef::e_float>("-2.4125195876041896775e+03"),
- boost::lexical_cast<boost::math::ef::e_float>("-7.0935347449210549190e+00"),
- boost::lexical_cast<boost::math::ef::e_float>("-1.5453977791786851041e-02"),
- boost::lexical_cast<boost::math::ef::e_float>("-2.5172644670688975051e-05"),
- boost::lexical_cast<boost::math::ef::e_float>("-3.0517226450451067446e-08"),
- boost::lexical_cast<boost::math::ef::e_float>("-2.6843448573468483278e-11"),
- boost::lexical_cast<boost::math::ef::e_float>("-1.5982226675653184646e-14"),
- boost::lexical_cast<boost::math::ef::e_float>("-5.2487866627945699800e-18"),
- };
- static const boost::math::ef::e_float Q1[] = {
- boost::lexical_cast<boost::math::ef::e_float>("-2.2335582639474375245e+15"),
- boost::lexical_cast<boost::math::ef::e_float>("7.8858692566751002988e+12"),
- boost::lexical_cast<boost::math::ef::e_float>("-1.2207067397808979846e+10"),
- boost::lexical_cast<boost::math::ef::e_float>("1.0377081058062166144e+07"),
- boost::lexical_cast<boost::math::ef::e_float>("-4.8527560179962773045e+03"),
- boost::lexical_cast<boost::math::ef::e_float>("1.0"),
- };
- static const boost::math::ef::e_float P2[] = {
- boost::lexical_cast<boost::math::ef::e_float>("-2.2210262233306573296e-04"),
- boost::lexical_cast<boost::math::ef::e_float>("1.3067392038106924055e-02"),
- boost::lexical_cast<boost::math::ef::e_float>("-4.4700805721174453923e-01"),
- boost::lexical_cast<boost::math::ef::e_float>("5.5674518371240761397e+00"),
- boost::lexical_cast<boost::math::ef::e_float>("-2.3517945679239481621e+01"),
- boost::lexical_cast<boost::math::ef::e_float>("3.1611322818701131207e+01"),
- boost::lexical_cast<boost::math::ef::e_float>("-9.6090021968656180000e+00"),
- };
- static const boost::math::ef::e_float Q2[] = {
- boost::lexical_cast<boost::math::ef::e_float>("-5.5194330231005480228e-04"),
- boost::lexical_cast<boost::math::ef::e_float>("3.2547697594819615062e-02"),
- boost::lexical_cast<boost::math::ef::e_float>("-1.1151759188741312645e+00"),
- boost::lexical_cast<boost::math::ef::e_float>("1.3982595353892851542e+01"),
- boost::lexical_cast<boost::math::ef::e_float>("-6.0228002066743340583e+01"),
- boost::lexical_cast<boost::math::ef::e_float>("8.5539563258012929600e+01"),
- boost::lexical_cast<boost::math::ef::e_float>("-3.1446690275135491500e+01"),
- boost::lexical_cast<boost::math::ef::e_float>("1.0"),
- };
- boost::math::ef::e_float value, factor, r;
- BOOST_MATH_STD_USING
- using namespace boost::math::tools;
- if (x < 0)
- {
- x = -x; // even function
- }
- if (x == 0)
- {
- return static_cast<boost::math::ef::e_float>(1);
- }
- if (x <= 15) // x in (0, 15]
- {
- boost::math::ef::e_float y = x * x;
- value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
- }
- else // x in (15, \infty)
- {
- boost::math::ef::e_float y = 1 / x - boost::math::ef::e_float(1) / 15;
- r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
- factor = exp(x) / sqrt(x);
- value = factor * r;
- }
- return value;
- }
- boost::math::ef::e_float bessel_i1(boost::math::ef::e_float x)
- {
- static const boost::math::ef::e_float P1[] = {
- lexical_cast<boost::math::ef::e_float>("-1.4577180278143463643e+15"),
- lexical_cast<boost::math::ef::e_float>("-1.7732037840791591320e+14"),
- lexical_cast<boost::math::ef::e_float>("-6.9876779648010090070e+12"),
- lexical_cast<boost::math::ef::e_float>("-1.3357437682275493024e+11"),
- lexical_cast<boost::math::ef::e_float>("-1.4828267606612366099e+09"),
- lexical_cast<boost::math::ef::e_float>("-1.0588550724769347106e+07"),
- lexical_cast<boost::math::ef::e_float>("-5.1894091982308017540e+04"),
- lexical_cast<boost::math::ef::e_float>("-1.8225946631657315931e+02"),
- lexical_cast<boost::math::ef::e_float>("-4.7207090827310162436e-01"),
- lexical_cast<boost::math::ef::e_float>("-9.1746443287817501309e-04"),
- lexical_cast<boost::math::ef::e_float>("-1.3466829827635152875e-06"),
- lexical_cast<boost::math::ef::e_float>("-1.4831904935994647675e-09"),
- lexical_cast<boost::math::ef::e_float>("-1.1928788903603238754e-12"),
- lexical_cast<boost::math::ef::e_float>("-6.5245515583151902910e-16"),
- lexical_cast<boost::math::ef::e_float>("-1.9705291802535139930e-19"),
- };
- static const boost::math::ef::e_float Q1[] = {
- lexical_cast<boost::math::ef::e_float>("-2.9154360556286927285e+15"),
- lexical_cast<boost::math::ef::e_float>("9.7887501377547640438e+12"),
- lexical_cast<boost::math::ef::e_float>("-1.4386907088588283434e+10"),
- lexical_cast<boost::math::ef::e_float>("1.1594225856856884006e+07"),
- lexical_cast<boost::math::ef::e_float>("-5.1326864679904189920e+03"),
- lexical_cast<boost::math::ef::e_float>("1.0"),
- };
- static const boost::math::ef::e_float P2[] = {
- lexical_cast<boost::math::ef::e_float>("1.4582087408985668208e-05"),
- lexical_cast<boost::math::ef::e_float>("-8.9359825138577646443e-04"),
- lexical_cast<boost::math::ef::e_float>("2.9204895411257790122e-02"),
- lexical_cast<boost::math::ef::e_float>("-3.4198728018058047439e-01"),
- lexical_cast<boost::math::ef::e_float>("1.3960118277609544334e+00"),
- lexical_cast<boost::math::ef::e_float>("-1.9746376087200685843e+00"),
- lexical_cast<boost::math::ef::e_float>("8.5591872901933459000e-01"),
- lexical_cast<boost::math::ef::e_float>("-6.0437159056137599999e-02"),
- };
- static const boost::math::ef::e_float Q2[] = {
- lexical_cast<boost::math::ef::e_float>("3.7510433111922824643e-05"),
- lexical_cast<boost::math::ef::e_float>("-2.2835624489492512649e-03"),
- lexical_cast<boost::math::ef::e_float>("7.4212010813186530069e-02"),
- lexical_cast<boost::math::ef::e_float>("-8.5017476463217924408e-01"),
- lexical_cast<boost::math::ef::e_float>("3.2593714889036996297e+00"),
- lexical_cast<boost::math::ef::e_float>("-3.8806586721556593450e+00"),
- lexical_cast<boost::math::ef::e_float>("1.0"),
- };
- boost::math::ef::e_float value, factor, r, w;
- BOOST_MATH_STD_USING
- using namespace boost::math::tools;
- w = abs(x);
- if (x == 0)
- {
- return static_cast<boost::math::ef::e_float>(0);
- }
- if (w <= 15) // w in (0, 15]
- {
- boost::math::ef::e_float y = x * x;
- r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
- factor = w;
- value = factor * r;
- }
- else // w in (15, \infty)
- {
- boost::math::ef::e_float y = 1 / w - boost::math::ef::e_float(1) / 15;
- r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
- factor = exp(w) / sqrt(w);
- value = factor * r;
- }
- if (x < 0)
- {
- value *= -value; // odd function
- }
- return value;
- }
- } // namespace detail
- }}
- #endif // BOOST_MATH_E_FLOAT_BINDINGS_HPP
|