123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530 |
- #include "stdafx.h"
- #include "BaseFunction.h"
- #include <opencv2/core/core.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/opencv.hpp>
- #include "OTSParticle.h"
- #include "OTSImageProcessParam.h"
- #include <OTSFieldData.h>
- #include "OTSMorphology.h"
- #include <opencv2/ximgproc/edge_filter.hpp>
- using namespace cv;
- using namespace std;
- using namespace OTSDATA;
- /***** 求两点间距离*****/
- float getDistance(Point pointO, Point pointA)
- {
- float distance;
- distance = powf((pointO.x - pointA.x), 2) + powf((pointO.y - pointA.y), 2);
- distance = sqrtf(distance);
- return distance;
- }
- /***** 点到直线的距离:P到AB的距离*****/
- //P为线外一点,AB为线段两个端点
- float getDist_P2L(Point pointP, Point pointA, Point pointB)
- {
- //求直线方程
- int A = 0, B = 0, C = 0;
- A = pointA.y - pointB.y;
- B = pointB.x - pointA.x;
- C = pointA.x * pointB.y - pointA.y * pointB.x;
- //代入点到直线距离公式
- float distance = 0;
- distance = ((float)abs(A * pointP.x + B * pointP.y + C)) / ((float)sqrtf(A * A + B * B));
- return distance;
- }
- int Side(Point P1, Point P2, Point point)
- {
- /*Point P1 = line.P1;
- Point P2 = line.P2;*/
- return ((P2.y - P1.y) * point.x + (P1.x - P2.x) * point.y + (P2.x * P1.y - P1.x * P2.y));
- }
- void FindInnerCircleInContour(vector<Point> contour, Point& center, int& radius)
- {
- Rect r = boundingRect(contour);
- int nL = r.x, nR = r.br().x; //轮廓左右边界
- int nT = r.y, nB = r.br().y; //轮廓上下边界
- double dist = 0;
- double maxdist = 0;
- for (int i = nL; i < nR; i++) //列
- {
- for (int j = nT; j < nB; j++) //行
- {
- //计算轮廓内部各点到最近轮廓点的距离
- dist = pointPolygonTest(contour, Point(i, j), true);
- if (dist > maxdist)
- {
- //求最大距离,只有轮廓最中心的点才距离最大
- maxdist = dist;
- center = Point(i, j);
- }
- }
- }
- radius = maxdist; //圆半径
- }
- BOOL GetParticleAverageChord(std::vector<Point> listEdge, double a_PixelSize, double& dPartFTD)
- {
- // safety check
- double nx = 0, ny = 0;
- Moments mu;
- mu = moments(listEdge, false);
- nx = mu.m10 / mu.m00;
- ny = mu.m01 / mu.m00;
- //circle(cvcopyImg, Point(nx, ny), 1, (255), 1);
- Point ptCenter = Point((int)nx, (int)ny);
- // coordinate transformation
- Point ptPosition;
- int radiusNum = 0;
- // get ferret diameter
- double sumFltDiameter = 0;
- int interval;
- int edgePointNum = listEdge.size();
- if (edgePointNum > 10)
- {
- interval = edgePointNum / 10;//get one line per 10 degree aproxemately
- }
- else
- {
- interval = 1;
- }
- for (int i = 0; i < edgePointNum; i++)
- {
- Point pt = listEdge[i];
- ptPosition.x = abs(pt.x - ptCenter.x);
- ptPosition.y = abs(pt.y - ptCenter.y);
- if (i % interval == 0)//calculate one line per 10 point ,so to speed up.don't calculate all the diameter.
- {
- double r1 = sqrt(pow(ptPosition.x, 2) + pow(ptPosition.y, 2));
- sumFltDiameter += r1;
- radiusNum += 1;
- //line(cvImageData, ptCenter, pt, Scalar(nBlackColor), nThickness, nLineType);
- }
- }
- if (radiusNum == 0)
- {
- dPartFTD = 0;
- }
- else
- {
- dPartFTD = a_PixelSize * sumFltDiameter / radiusNum * 2;
- }
- //imshow("feret center", cvImageData);
- return TRUE;
- }
- void linearSmooth5(WORD wordIn[], WORD wordOut[], int N = 255)//smooth algorithm
- {
- double in[256];
- double out[256];
- double smoothCurveData[256];
- for (int i = 0; i < 256; i++)
- {
- in[i] = (double)wordIn[i];
- }
- int i;
- if (N < 5)
- {
- for (i = 0; i <= N - 1; i++)
- {
- out[i] = in[i];
- }
- }
- else
- {
- out[0] = (3.0 * in[0] + 2.0 * in[1] + in[2] - in[4]) / 5.0;
- out[1] = (4.0 * in[0] + 3.0 * in[1] + 2 * in[2] + in[3]) / 10.0;
- for (i = 2; i <= N - 3; i++)
- {
- out[i] = (in[i - 2] + in[i - 1] + in[i] + in[i + 1] + in[i + 2]) / 5.0;
- }
- out[N - 2] = (4.0 * in[N - 1] + 3.0 * in[N - 2] + 2 * in[N - 3] + in[N - 4]) / 10.0;
- out[N - 1] = (3.0 * in[N - 1] + 2.0 * in[N - 2] + in[N - 3] - in[N - 5]) / 5.0;
- }
- for (int i = 0; i < N; i++)
- {
- wordOut[i] = (WORD)out[i];
- }
- }
- void BlurImage(CBSEImgPtr inImg)
- {
- int rows, cols;
- cols = inImg->GetWidth();
- rows = inImg->GetHeight();
- BYTE* pPixel = inImg->GetImageDataPointer();
- Mat cvcopyImg = Mat(rows, cols, CV_8UC1, pPixel);
- //Mat blurImg;
- //medianBlur(cvcopyImg, cvcopyImg, 11);//get rid of the noise point.
- //cv::bilateralFilter
- cv::GaussianBlur(cvcopyImg, cvcopyImg, Size(5, 5), 2);
- //inImg->SetImageData(cvcopyImg.data, width, height);
- /*outImg = inImg;*/
- }
- Mat GetMatDataFromBseImg(CBSEImgPtr inImg)
- {
- int rows, cols;
- cols = inImg->GetWidth();
- rows = inImg->GetHeight();
- BYTE* pPixel = inImg->GetImageDataPointer();
- Mat cvcopyImg = Mat(rows, cols, CV_8UC1, pPixel);
- return cvcopyImg;
- }
- CBSEImgPtr GetBSEImgFromMat(Mat inImg)
- {
- CBSEImgPtr bse = CBSEImgPtr(new CBSEImg(CRect(0, 0, inImg.cols, inImg.rows)));
- BYTE* pPixel = inImg.data;
- bse->SetImageData(pPixel, inImg.cols, inImg.rows);
- return bse;
- }
- /***********************************************************
- 增强算法的原理在于先统计每个灰度值在整个图像中所占的比例
- 然后以小于当前灰度值的所有灰度值在总像素中所占的比例,作为增益系数
- 对每一个像素点进行调整。由于每一个值的增益系数都是小于它的所有值所占
- 的比例和。所以就使得经过增强之后的图像亮的更亮,暗的更暗。
- ************************************************************/
- void ImageStretchByHistogram(const Mat& src, Mat& dst)
- {
- //判断传入参数是否正常
- if (!(src.size().width == dst.size().width))
- {
- cout << "error" << endl;
- return;
- }
- double p[256], p1[256], num[256];
- memset(p, 0, sizeof(p));
- memset(p1, 0, sizeof(p1));
- memset(num, 0, sizeof(num));
- int height = src.size().height;
- int width = src.size().width;
- long wMulh = height * width;
- //统计每一个灰度值在整个图像中所占个数
- for (int x = 0; x < width; x++)
- {
- for (int y = 0; y < height; y++)
- {
- uchar v = src.at<uchar>(y, x);
- num[v]++;
- }
- }
- //使用上一步的统计结果计算每一个灰度值所占总像素的比例
- for (int i = 0; i < 256; i++)
- {
- p[i] = num[i] / wMulh;
- }
- //计算每一个灰度值,小于当前灰度值的所有灰度值在总像素中所占的比例
- //p1[i]=sum(p[j]); j<=i;
- for (int i = 0; i < 256; i++)
- {
- for (int k = 0; k <= i; k++)
- p1[i] += p[k];
- }
- //以小于当前灰度值的所有灰度值在总像素中所占的比例,作为增益系数对每一个像素点进行调整。
- for (int y = 0; y < height; y++)
- {
- for (int x = 0; x < width; x++) {
- uchar v = src.at<uchar>(y, x);
- dst.at<uchar>(y, x) = p1[v] * 255 + 0.5;
- }
- }
- return;
- }
- //调整图像对比度
- Mat AdjustContrastY(const Mat& img)
- {
- Mat out = Mat::zeros(img.size(), CV_8UC1);
- Mat workImg = img.clone();
- //对图像进行对比度增强
- ImageStretchByHistogram(workImg, out);
- return Mat(out);
- }
- void CVRemoveBG(const cv::Mat& img, cv::Mat& dst,int bgstart,int bgend/*, long& nNumParticle*/)
- {
- int min_gray = bgstart;
- int max_gray = bgend;
- if (img.empty())
- {
- std::cout << "图像为空";
- return;
- }
- Mat image = img.clone();
- if (image.channels() != 1)
- {
- cv::cvtColor(image, image, cv::COLOR_BGR2GRAY);
- }
- //lut 查找表 取规定范围的灰度图 排除拼图时四周灰度为255区域 以及 灰度值较低的区域
- uchar lutvalues[256];
- for (int i = 0; i < 256; i++)
- {
- if (i <= min_gray || i >= max_gray)
- {
- lutvalues[i] = 255;
- /*nNumParticle++;*/
- }
- else
- {
- lutvalues[i] = 0;
- }
- }
- cv::Mat lutpara(1, 256, CV_8UC1, lutvalues);
- cv::LUT(image, lutpara, image);
- cv::Mat out_fill0, out_fill;
- //开运算 获得x>5 的元素
- cv::morphologyEx(image, out_fill0, cv::MorphTypes::MORPH_OPEN, cv::getStructuringElement(0, cv::Size(5, 1)), cv::Point(-1, -1), 1);
- cv::morphologyEx(image, out_fill, cv::MorphTypes::MORPH_OPEN, cv::getStructuringElement(0, cv::Size(1, 5)), cv::Point(-1, -1), 1);
- out_fill = out_fill + out_fill0;
- //闭运算
- cv::morphologyEx(out_fill, out_fill, cv::MorphTypes::MORPH_CLOSE, cv::getStructuringElement(0, cv::Size(3, 3)), cv::Point(-1, -1), 1);
- //二值
- cv::threshold(out_fill, out_fill, 1, 255, cv::ThresholdTypes::THRESH_BINARY);
- dst = out_fill.clone();
- }
- void RemoveBG_old(const cv::Mat& img, cv::Mat& dst, int nBGStart, int nBGEnd,long& nNumParticle)
- {
- int w, h;
- w = img.cols;
- h = img.rows;
- BYTE* pSrcImg = img.data;
- BYTE* pPixel = new BYTE[w * h];
- BYTE* pTempImg = new BYTE[w * h];
- for (unsigned int i = 0; i < w*h; i++)
- {
- if (pSrcImg[i] < nBGStart || pSrcImg[i] > nBGEnd)
- {
- pPixel[i] = 255;
- nNumParticle++;
- }
- else
- {
- pPixel[i] = 0;
-
- }
-
- }
- int errodDilateParam =5;
- if (errodDilateParam > 0)
- {
- BErode3(pPixel, pTempImg, errodDilateParam, h, w);
- BDilate3(pTempImg, pPixel, errodDilateParam, h, w);
- }
- dst.data = pPixel;
- delete[] pTempImg;
- }
- void AutoRemove_background_OTS(const cv::Mat& img, cv::Mat& dst, int black_thing, int min_size, int min_gray)
- {
- if (img.empty())
- {
- //ui.statusBar->showMessage(QString("图像为空"));
- return;
- }
- Mat image = img.clone();
- if (image.channels() != 1)
- {
- cv::cvtColor(image, image, cv::COLOR_BGR2GRAY);
- }
- cv::Scalar mean, std;
- cv::meanStdDev(image, mean, std);
- auto a = mean[0];
- auto d = std[0];
- bool direct_binary = false;
- if (a > 240)//全亮背景 暗颗粒;直接二值提取 ;特殊情况
- {
- direct_binary = true;
- }
- bool both_black_bright = false;
- auto parame0 = black_thing;
- auto parame1 = min_size;
- auto parame2 = min_gray;
- if (parame0 == 2)
- {
- both_black_bright = true;
- }
- //自适应滤波
- cv::Ptr<cv::ximgproc::AdaptiveManifoldFilter> pAdaptiveManifoldFilter
- = cv::ximgproc::createAMFilter(3.0, 0.1, true);
- cv::Mat temp1, dst_adapt;
- cv::Mat out_thresh;//提取前景二值图
- if (direct_binary)
- {
- int min = 30;
- int thre = a - d - 50;
- if ((a - d - 50) < 30)
- {
- thre = min;
- }
- cv::threshold(image, out_thresh, thre, 255, cv::ThresholdTypes::THRESH_BINARY_INV);
- }
- else
- {
- cv::GaussianBlur(image, temp1, cv::Size(3, 3), 1.0, 1.0);
- pAdaptiveManifoldFilter->filter(temp1, dst_adapt, image);
- //dst_adapt = image;
- cv::ThresholdTypes img_ThresholdTypes = cv::ThresholdTypes::THRESH_BINARY_INV;
- cv::Mat image_Negate;
- if (both_black_bright)
- {
- //提取暗物体
- cv::Mat black_t;
- int min_gray = 0;
- float segma_b = 1.5;
- int max_gray = int(a - d * segma_b);
- max_gray = std::min(max_gray, 255);
- uchar lutvalues[256];
- for (int i = 0; i < 256; i++)
- {
- if (i >= min_gray && i <= max_gray)
- {
- lutvalues[i] = 255;
- }
- else
- {
- lutvalues[i] = 0;
- }
- }
- cv::Mat lutpara(1, 256, CV_8UC1, lutvalues);
- cv::LUT(dst_adapt, lutpara, black_t);
- //提取亮物体
- cv::Mat bright_t;
- int min_gray_bright = int(a + d * segma_b);
- int max_gray_bright = 255;
- min_gray_bright = std::max(min_gray_bright, 120);
- uchar lutvalues1[256];
- for (int i = 0; i < 256; i++)
- {
- if (i >= min_gray_bright && i <= max_gray_bright)
- {
- lutvalues1[i] = 255;
- }
- else
- {
- lutvalues1[i] = 0;
- }
- }
- cv::Mat lutpara1(1, 256, CV_8UC1, lutvalues1);
- cv::LUT(dst_adapt, lutpara1, bright_t);
- out_thresh = black_t + bright_t;
- //cv::threshold(out_thresh, out_thresh, 1, 255, cv::ThresholdTypes::THRESH_BINARY);
- }
- else
- {
- //统一将提取物转换为暗物质亮背景
- if (!direct_binary && (parame0 == 0))//暗物体,暗背景
- {
- image_Negate = image;
- }
- else
- {
- dst_adapt = ~dst_adapt;
- image_Negate = ~image;
- }
- //三角阈值
- auto result_THRESH_TRIANGLE = cv::threshold(dst_adapt, out_thresh, 100, 255, cv::ThresholdTypes::THRESH_TRIANGLE | img_ThresholdTypes);
- cv::Mat extractedImage;
- cv::bitwise_and(image_Negate, image_Negate, extractedImage, out_thresh = out_thresh > 0); // 使用mask > 0将mask转换为二值图像
- // 计算提取区域的均值和方差
- cv::Scalar mean1, std1;
- cv::meanStdDev(extractedImage, mean1, std1, out_thresh);
- auto mean0 = mean1[0];
- auto std0 = std1[0];
- // binaryImage二值图像;去除部分扩大区域
- cv::Mat binaryImage = cv::Mat::zeros(image_Negate.size(), image_Negate.type());
- //筛选系数
- int segma = 4;
- float filter_gray = (mean0 + std0 / segma);
- //filter_gray = result_THRESH_TRIANGLE;
- for (int y = 0; y < extractedImage.rows; ++y) {
- for (int x = 0; x < extractedImage.cols; ++x) {
- if (extractedImage.at<uchar>(y, x) >= 1 && extractedImage.at<uchar>(y, x) <= (int)(filter_gray)) {
- binaryImage.at<uchar>(y, x) = 255; // 设置为白色(255)
- }
- }
- }
- //直接提取小于parame2(默认为30)的区域
- cv::Mat thing_area;
- cv::threshold(image_Negate, thing_area, parame2, 255, img_ThresholdTypes);
- //out_thresh = binaryImage ;
- out_thresh = binaryImage + thing_area;
- }
- }
- cv::Mat img_draw = cv::Mat::zeros(image.size(), CV_8UC3);
- //连通域过滤绘制颗粒
-
- //随机颜色
- cv::RNG rng(10086);
- cv::Mat labels, stats, controids;
- int number = cv::connectedComponentsWithStats(out_thresh, labels, stats, controids, 8, CV_16U);
- std::vector<cv::Vec3b> colors;
- vector<int> draw_indexs;
- for (int i = 0; i < number; i++)
- {
- cv::Vec3b color = cv::Vec3b(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256));
- colors.emplace_back(color);
- auto area = stats.at<int>(i, CC_STAT_AREA);
- if (area < parame1)
- {
- continue;
- }
- draw_indexs.push_back(i);
- }
- //染色 过滤
- int w = img_draw.cols;
- int h = img_draw.rows;
- cv::Vec3b color = cv::Vec3b(0, 0, 255);
- for (int row = 0; row < h; row++)
- {
- for (int col = 0; col < w; col++)
- {
- int label = labels.at<uint16_t>(row, col);
- if (label == 0)
- {
- continue;
- }
- auto it = std::find(draw_indexs.begin(), draw_indexs.end(), label);
- if (it != draw_indexs.end())
- {
- img_draw.at<Vec3b>(row, col) = color;
- }
- }
- }
-
- //原图染色
- //cv::Mat img_blend;
- //double alpha = 0.7; // 设定img1的权重
- //double beta = 1 - alpha; // 计算img2的权重
- //cv::cvtColor(image, image, cv::COLOR_GRAY2BGR);
- //cv::addWeighted(image, alpha, img_draw, beta, 0.0, img_blend);
- //dst = img_blend.clone();
- //二值图
- vector<cv::Mat> outs;
- cv::split(img_draw, outs);
- dst = outs[2].clone();
- }
|